PDA

Просмотр полной версии : Источники энергии и пути ее превращения в организме



stayer
03.10.2012, 17:25
Современный взгляд на энергообмен в организме. Для понимания сути различных видов подготовки в спорте.



Источники энергии и пути ее превращения в организме

Марьянович А.Т.
д.б.н., профессор

Энергия в человеческом организме получается путем утилизации пищевых веществ. Содержащаяся в этих веществах энергия сначала превращается в энергию макроэргических связей в молекуле аденозинтрифосфата (АТФ), а уже АТФ отдает энергию мышцам. В молекуле АТФ связи между кислотными остатками (фосфатами) содержат в себе значительное количество энергии. В организме есть специальный белок – фермент АТФаза, которая отщепляет от АТФ один (концевой) фосфат. В результате АТФ превращается в аденозиндифосфат (АДФ). Высвободившаяся энергия передается в том числе и мышцам. Рассмотрим на примере глюкозы использование пищевых веществ – источников энергии. Первый этап утилизации глюкозы называется гликолиз (что в переводе означает “расщепление глюкозы”). В ходе его молекула глюкозы превращается в молекулу пирувата (пировиноградной кислоты), давая при этом энергию для синтеза всего лишь двух молекул АТФ. Если в тканях недостаточно кислорода для окисления пирувата, он превращается в лактат (молочную кислоту). Это хорошо известное тренерам вещество накапливается в крови до тех пор, пока нагрузка на организм не снизится и не поступит достаточное количество кислорода. Тогда лактат превратится назад в пируват; пируват даст начало ацетилкоэнзиму А, а тот претерпит многочисленные превращения, составляющие суть так называемого цикла Кребса. Процесс закончится образованием в митохондриях еще 36-ти молекул АТФ. Таким образом, полное использование одной молекулы глюкозы дает организму 38 молекул АТФ. Однако глюкоза – не единственный источник ацетилкоэнзима А, он может образовываться и из жирных кислот. Окисление одной молекулы жирной кислоты дает энергию для образования 138-ми молекул АТФ. Повторю: гликолиз происходит без поглощения кислорода, это анаэробное (в буквальном переводе – “безвоздушное”) дыхание; цикл Кребса и процессы, происходящие в митохондриях, возможны только в кислородной среде (аэробное дыхание). Соотношение вкладов анаэробного и аэробного процессов в физическую работоспособность человека очевидно: из одной молекулы глюкозы без использования кислорода организм получает 2 молекулы АТФ, а при использовании кислорода – 38 молекул. Таким образом, анаэробные процессы высвобождают только чуть более 5% энергии, содержащейся в глюкозе, а аэробные – остальные 95%. Анаэробная мощность организма спортсмена определяется его способностью мобилизовать максимальное количество мышечных волокон и с помощью гликолиза снабдить их достаточным количеством АТФ. Однако при кратковременных мышечных нагрузках этот путь является главным: кровь не успевает доставлять к мышцам необходимое количество кислорода, и большая часть энергии получается анаэробным путем. Лактатный порог. По мере того, как игрок выполняет физическую нагрузку возрастающей мощности, молочная кислота накапливается в его мышцах и выходит в кровь. Часть лактата при этом нейтрализуется специальными веществами, содержащимися в крови, но постепенно все новые количества образующегося лактата преодолевают сопротивление, и концентрация молочной кислоты в крови начинает повышаться. В этот момент кривая концентрации образует излом. Это означает, что к аэробному процессу получения энергии постепенно добавляется анаэробный процесс. Такой переход называется прохождением аэробного, или лактатного порога. Большинство физиологов спорта принимает за лактатный порог концентрацию молочной кислоты в крови 4 мМ. Анаэробный порог соответствует потреблению кислорода в 3,5–4,5 л/мин. После прохождения порога частота и глубина дыхания резко возрастают. Уровень лактата в крови хоккеистов повышается. Концентрация молочной кислоты в крови хоккеиста к концу периодов достигает 8–13 мМ, то есть, значительно превышает лактатный порог. Кислородный долг. Небольшое повышение концентрации молочной кислоты в крови помогает эритроцитам отдавать тканям кислород. Однако постепенно накопление молочной кислоты изменяет скорость многочисленных биохимических реакций в организме. Предполагают, что при этом нарушается кровоснабжение мышечных волокон. Накопление молочной кислоты и все связанные с этим изменения в организме называются образованием кислородного долга, или дефицита кислорода. Когда хоккеист прекращает работу или значительно снижает ее интенсивность, он устраняет несоответствие между потребностью мышц в кислороде и возможностями кардио-респираторной системы по его доставке. Лактат превращается обратно в пируват, а тот (через стадию ацетилкоэнзима А) окисляется в цикле Кребса до СО2, который выводится легкими в окружающую среду. Так происходит погашение кислородного долга. Компенсация долга растягивается на несколько минут. Коэффициент полезного действия организма. Организм не может использовать всю энергию, содержащуюся в пищевых веществах. Всякое превращение энергии из одного вида в другой происходит с обязательным образованием тепла, которое затем рассеивается в окружающем пространстве. Поэтому как синтез АТФ, так и передача энергии от АТФ к мышцам происходят с потерей примерно половины ее в виде тепла. Только половина химической энергии, содержащейся в пище, идет на образование АТФ, вторая половина сразу же превращается в тепло и рассеивается в окружающей среде. Синтезированные молекулы АТФ доносятся кровью до мышц и там половина запасенной в них энергии используется в мышечном сокращении, а половина опять-таки превращается в тепло. В результате на выполнение внешней работы (в том числе и во время игры) человек может затратить не более 25% всей энергии, полученной им из пищи, остальные 75% уходят в тепло. Все же коэффициент полезного действия (КПД) человека (около 25%) во много раз выше, чем КПД, например, паровоза (примерно 4%). Типы спортивных нагрузок. С точки зрения физиологии обмена энергии все варианты спортивных нагрузок должны быть разделены на три типа:
- нагрузки, обеспечиваемые анаэробным путем;
- нагрузки, обеспечиваемые аэробным и анаэробным путями;
- нагрузки, обеспечиваемые аэробным путем. Коротко их можно называть анаэробными, смешанными и аэробными нагрузками. Соотношение между аэробными и анаэробными процессами зависит от продолжительности нагрузки: вклад анаэробных процессов быстро снижается, а аэробных, наоборот, растет. До 30-й сек нагрузки АТФ образуется анаэробным путем. После 50-й сек происходит резкий подъем мощности аэробных процессов, и только около 70-й сек доли аэробного и анаэробного процессов уравниваются. Начиная с 90-й сек энерготраты спортсмена обеспечиваются почти исключительно аэробным путем. Во время матча в организме хоккеиста поддерживается довольно высокий уровень обмена энергии, обеспечиваемый почти исключительно аэробными процессами. При выходе игрока на лед уровень обмена энергии возрастает дополнительно, но пока еще сохраняет преимущественно аэробный характер. Во время выполнения игроком ТТД, он достигает максимума. Такие 5–7 секундные “всплески” обмена обеспечиваются, конечно, только анаэробным путем. Типы мышечных волокон. В скелетных мышцах человека различают три типа мышечных волокон:
- тип I – медленные, с преобладанием аэробных процессов;
- тип Iia – быстрые, в которых сочетаются аэробные и анаэробные процессы;
- тип Iiб – быстрые, в которых преобладают анаэробные процессы. Волокна различаются содержанием миозинАТФазы – фермента, необходимого для расщепления АТФ: ее много в быстрых волокнах и мало – в медленных. Очевидно, что для хоккеиста наибольшее значение имеют волокна последнего из перечисленных типов. Соотношение между этими типами волокон не постоянно, в процессе тренировки оно меняется; позже я остановлюсь на этом подробнее. Влияние тренировок на обмен энергии. Как было показано выше, теоретически аэробную производительность человеческого организма могут ограничивать следующие факторы:
- недостаток глюкозы (или гликогена);
- недостаток кислорода для окисления глюкозы;
- недостаточное количество митохондрий в мышечных волокнах и недостаточное количество ферментов в митохондриях, для того чтобы осуществить реакцию окисления. Недостаток глюкозы в реальной хоккейной практике действует лишь частично: общие запасы энергии в организме спортсмена достаточны, питание их пополняет. Тренировка на выносливость – эффективное средство поддержания в организме высокого уровня запасов гликогена. Однако такая тренировка, как это подчеркивали тренеры, выступавшие на нашем семинаре, не решает всех проблем физической подготовки хоккеиста. Приведу пример и я: спортсмен в течение 6 недель тренировался одной ногой вращать педаль велоэргометра. В результате МПК возросло на 22%, а выносливость мышц нижней конечности – на 500%. Тренировка привела к тому, что выполнение физической нагрузки нижней конечностью вызывало уже существенно меньшее снижение концентрации гликогена в мышцах работающей ноги, концентрация лактата также возрастала значительно меньше. Большее значение в практике хоккея имеет недостаточное поступление кислорода в мышечные волокна. Для увеличения доставки кислорода к мышцам происходят параллельно изменения в дыхательной и сердечно-сосудистой системах, а именно увеличиваются:
- жизненная емкость легких;
- глубина и минутный объем дыхания;
- ударный объем и минутный объем кровообращения;
- извлечение кислорода из единицы объема артериальной крови. Наибольшее значение имеет недостаточная утилизация кислорода мышцами. Поэтому в ходе тренировок на выносливость возрастают количество митохондрий в мышечных волокнах и активность окислительных ферментов. Общее же количество мышечных волокон практически неизменно в течение всей жизни спортсмена и не зависит от тренировок. Возможно только увеличение массы существующих волокон и преимущественное развитие одних за счет других. Доля каждого из типов зависит от характера тренировок: у хоккеистов возрастает доля волокон типов Iia и Iiб. Биохимические средства ускоренного восстановления работоспособности хоккеистов. Одна из серьезных проблем современного хоккея – эффективное снятие утомления, накапливающегося в организме игроков в результате интенсивной тренировочной и соревновательной деятельности. Неполное выведение из организма недоокисленных продуктов метаболизма, образующихся в тканях при дефиците кислорода, а также накопление в клетках аномальных продуктов, связанных с избыточным образованием высокореакционных свободных радикалов, замедляют процесс нормализации обмена веществ, снижают работоспособность игрока и увеличивают риск микротравматизации.




Физиологические механизмы выносливости и специальная выносливость

Энергия, необходимая для мышечного сокращения, освобождается в результате распада химических веществ. Мышечная клетка устроена так, что может использовать для своего сокращения энергию распада только одного-единственного химического вещества – аденозинтрифосфорной кислоты (АТФ). Энергия распада других веществ для сокращения мышцы не подходит. Соответственно, во время мышечного сокращения происходит распад АТФ в работающей мышечной клетке. Если бы не было механизмов восстановления этого вещества, то мышца, сократившись один-два раза, навсегда потеряла бы эту способность. Но природа предусмотрела возможность восстанавливать АТФ. Для ее восстановления подходит энергия распада практически любого вещества. Обычно это углеводы, реже – жиры, еще реже – белки или другие вещества. Запасы этих веществ поступают в организм вместе с пищей. Под действием фермента АТФаза АТФ гидролизуется, отсоединяя фосфатную группу в виде ортофосфорной кислоты (Н3РО4), и превращается в АДФ, при этом высвобождается энергия.

АТФ + H2O = АДФ + H3PO4 + энергия

Запас молекул АТФ в мышце ограничен, поэтому расход энергии при работе мышцы требует постоянного его восполнения. Мышца имеет три источника воспроизводства энергии: 1) расщепление креатинфосфата; 2) гликолиз; 3) окисление органических веществ в митохондриях. В соответствии с эти рассматривают три процесса образования энергии.

1. Креатинфосфатный, или алактатный анаэробный процесс образования энергии. Крефтинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.

АДФ + креатинфосфат = АТФ + креатин

Запасы креатинфосфата в волокне не велики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы, до момента активизации других более мощных источников – гликолиза и кислородного окисления. По окончании работы мышцы реакция идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Участие данного процесса в энергетическом обеспечение мышечной работы в наибольшей мере проявляется при выполнении упражнений максимальной мощности в течение 6-10 секунд (Н. И. Волков, 1967, 1987; Я. М. Коц, 1982).

2. Гликолитический анаэробный процесс образования энергии.

Гликолиз – процесс распада одной молекулы глюкозы (C6H12O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной для "зарядки" двух молекул АТФ, протекает в саркоплазме под воздействием 10 специальных ферментов.

C6H12O6 + 2H3PO4 + 2АДФ = 2C3H6O3 + 2АТФ + 2H2O.

Гликолиз протекает без потребления кислорода и способен быстро восстанавливать запасы АТФ в мышце.

Максимальная мощность этого процесса достигается в упражнениях, длящихся от 20 до 90 секунд (Н. И. Волков, 1975, 1987). За счет гликолитического анаэробного процесса образования энергии может обеспечиваться интенсивная мышечная работа от 20 секунд до 4-5 минут, а также начало любой деятельности (Я. М. Коц, 1982).

3. Образование энергии путем аэробного расщепления пищевых веществ.

Аэробный ресинтез АТФ происходит при окислении жиров и углеводов. Окисление протекает в митохондриях скелетных мышц под воздействием специальных ферментов и требует затрат кислорода, а соответственно и времени на его доставку. Такие процессы называются аэробными. Окисление происходит в несколько этапов, сначала идет гликолиз (см. выше), но образовавшиеся в ходе промежуточного этапа этой реакции две молекулы пирувата не преобразуются в молекулы молочной кислоты, а проникают в митохондрии, где окисляются в цикле Кребса до углекислого газа СО2 и воды Н2О и дают энергию для производства еще 36 молекул АТФ. Суммарное уравнение реакции окисления глюкозы выглядит так:

C6H12O6 + 6O2 + 38АДФ + 38H3PO4 = 6CO2 + 44H2О + 38АТФ

Итого распад глюкозы по аэробному пути дает энергию для восстановления 38 молекул АТФ. То есть окисление в 19 раз эффективнее гликолиза.

Наибольшая мощность процесса образования энергии достигается в упражнениях, длящихся более 3 минут (Н. И. Волков, 1975).

Таким образом, распад веществ в мышечной клетке может происходить двумя основными путями: при участии кислорода (аэробно) и без участия кислорода (анаэробно). У каждого способа есть свои преимущества и недостатки .

Преимущество распада веществ с участием кислорода (аэробного) в том, что такой распад не сопровождается накоплением в организме промежуточных недоокисленных продуктов обмена. Вещества расщепляются до конечных продуктов – углекислого газа и воды. Полный распад дает, соответственно, много энергии, поэтому является более экономичным, чем неполный распад. Кроме того, с помощью кислорода можно расщепить практически любые вещества, имеющиеся в организме – углеводы, жиры, белки. Недостатком же является чрезвычайная длительность такого способа распада, поэтому он не может использоваться в начале работы или в случаях, когда деятельность достаточно интенсивна и требует высокой скорости освобождения энергии.

Преимуществом бескислородного (анаэробного) распада является высокая скорость освобождения энергии, необходимой для синтеза АТФ, что позволяет выполнять чрезвычайно интенсивную работу. Но существует ряд недостатков такого способа расщепления.

Во-первых, без участия кислорода в мышечных клетках способны расщепляться не все вещества, а только определенные виды углеводов (глюкоза и ее производное – гликоген, причем обычно используется гликоген) и креатинфосфат. Запасы этих веществ в клетке не безграничны. Креатинфосфат или гликоген должны либо восстанавливаться, либо поступать из крови. На оба процесса требуется определенное время, в течение которого интенсивную работу выполнять уже невозможно.

Во-вторых, без участия кислорода вещества расщепляются не полностью, поэтому в мышцах накапливаются недоокисленные продукты распада (наиболее известным является молочная кислота – один из возможных продуктов неполного распада гликогена). Эти недоокисленные вещества, изменяют внутреннюю среду клеток так, что клетки становятся неспособны выполнять свои функции. То есть мышца становится неспособной более сокращаться, и человек прекращает работу.

В действительности во время мышечной деятельности наблюдаются оба варианта распада веществ, однако, один из них, как правило, преобладает. Если при работе распад веществ для восстановления АТФ происходит преимущественно с участием кислорода, такая работа называется аэробной. Если же распад веществ происходит преимущественно без участия кислорода, такая работа называется анаэробной (Я. М. Коц, 1982).

Итак, ресинтез АТФ в процессе мышечной деятельности осуществляется за счет метаболических процессов трех видов:

аэробного – окислительного, за счет кислорода воздуха;

гликолитического анаэробного – за счет расщепления гликогена, содержащегося в основном в печени и в мышцах, – до молочной кислоты;

алактатного анаэробного (креатинфосфатного) – за счет расщепления фосфорных соединений, содержащихся и образующихся непосредственно в мышцах.

Проявление выносливости, таким образом, можно представить как результат различного сочетания трех ее компонентов: аэробного, гликолитического и алактатного.

Специальная выносливость для каждой спортивной дисциплины имеет свои ведущие компоненты, определяющие ее специфичность в конкретном виде соревновательной деятельности. Так, в тяжелой атлетике, метаниях, гиревом спорте ведущими компонентами будут являться максимальная сила и емкость анаэробной алактатной системы энергообеспечения. В спринтерских дисциплинах – абсолютная скорость и емкость алактатной энергосистемы. В сложнокоординационных видах спорта – резистентность организма, личностные качества. В видах спорта на выносливость – возможности всех энергосистем, экономизация и личностные качества. В спортивных играх и единоборствах – энергетические возможности, резистентность и экономичность (Ф. П. Суслов, 1997, с. 40)

http://www.fizkulturaisport.ru/images/stories/vynoslivost/02-suslov-specialnaya-vynoslivost.jpg (http://www.fizkulturaisport.ru/images/stories/vynoslivost/02-suslov-specialnaya-vynoslivost.jpg)
Структура многокомпонентного качества специальной выносливости (по Ф. П. Суслову)

Таким образом, в зависимости от характера утомления выносливость подразделяется на аэробную (общую), скоростную (алактатную и гликолитическую), смешанную (аэробно-анаэробную) и силовую.

Источник: Дипломная работа "Развитие выносливости в подготовке самбистов"

KURT9
03.10.2012, 17:34
Нечто подобное мне преподавали в молодости,на водолазной подготовке.